
Socket Programming

Limi Kalita

M.Tech Student, Department of Computer Science and Engineering,
Assam Down Town University,

Guwahati, India.

Abstract: The aim of the paper is to introduce sockets, its
deployment pertaining to network programming. Sockets play
a vital role in client server applications. The client and server
can communicate with each other by writing to or reading
from these sockets. They were invented in Berkeley as part of
the BSD flavor of UNIX operating systems. And they spread
like wildfire with the Internet. This paper introduces elements
of network programming and concepts involved in creating
network applications using sockets. One of the most basic
network programming tasks likely to be faced as a java
programmer is performing the socket functions/methods
because java has been preferred mostly for establishing client
server communications using sockets.

Keywords: Socket, Port, Transport Layer, TCP, UDP

1. INTRODUCTION:
In the 1980s, the US government’s Advanced Research
Projects Agency (ARPA) provided funds to the University
of California at Berkeley to implement TCP/IP protocols
under the UNIX operating system. During this project, a
group of Berkeley researchers developed an application
program interface (API) for TCP/IP network
communications called the socket interface. The socket
interface is an API TCP/IP networks i.e. it defines a variety
of software functions or routines for the development of
applications for TCP/IP networks. The socket interface
designers originally built their interface into the UNIX
operating system. However, the other operating systems,
environments, such as Microsoft Windows, implement the
socket interface as software libraries. However, regardless

of the environment in which we program, the program code
will look much the same. Socket programming can be done
in any language, which supports network communication,
but java is preferred because it is platform independent, it
has exception mechanisms for robust handling of common
problems that occur during I/O and networking operations
and its threading facilities provide a way to easily
implement powerful servers One of java’s major strong
suits as a programming language for client-server
application development is its wide range of network
support. Java has this advantage because it was developed
with the Internet in mind. Another advantage of java is that
it provides security. The result is that we have a lot of
options in regard to network programming in Java. Java
performs all of its network communication through sockets.
1.1 Client-Server Communication
A network is composed of computers which is either a
client or a server. A server is a program that is offering
some service whereas a client is a program that is
requesting some service. Servers are powerful computers
or processes dedicated to managing disk drives (file
servers), printers (print servers), or network traffic
(network services) whereas clients are PCs or workstations
on which users run applications. Clients rely on servers for
resources, such as files, devices and even processing
power. When these programs are executed, as a result, a
client and a server process are created simultaneously and
these two processes communicate with each other by
reading from and writing to sockets as shown in figure: 1.1.

Client Server

Limi Kalita / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4802-4807

www.ijcsit.com 4802

These sockets are the programming interfaces provided by
the TCP and UDP protocols for stream and datagram
communication respectively of the transport layer which is
a part of the TCP/IP stack. When creating a network
application, the developer's main task is to write the code
for both the client and server programs. The client/server
application that is covered here is a proprietary client/server
application. A single developer (or development team)
creates both the client and server programs, and the
developer has complete control over what goes in the code.
But because the code does not implement a public-domain
protocol, other independent developers will not be able to
develop code that interoperates with the application. When
developing a proprietary application, the developer must be
careful not to use one of the well-known port numbers
defined in the RFCs.
1.2 Sockets:
This term ‘socket’ has come from an electricity/phone
socket metaphor where sockets acts as interfaces that plug
into each other over a network.
Technically, sockets had been defined in many ways.

1. According to Wikipedia, a network socket is an
endpoint of an inter-process communication flow

across a computer network . A socket is composed
of an IP address and a port number.

2. Sockets can be defined as the end-points of a
connection between two computers identified by
an IP Address and a port number.

3. Sockets can also be defined as a software
abstraction used to represent the “terminals” of a
connection between two machines.

4. It can also be defined as an abstraction that is
provided to an application programmer to send or
receive data to another process.

5. The socket is the door between the application
process and TCP.

6. Socket is an interface between the application and
the network.

One popular e.g. of Sockets are the Dixie cups game
played where we took two paper cups and tied them
together with the help of a string to form a telephone as
shown in figure: 1.3.

Figure: 1.3 Dixie cups

Figure: 1.2 Examples of a socket

Limi Kalita / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4802-4807

www.ijcsit.com 4803

Your friend would take one of the cups and walk to the
other side of the room and talk into the cup. You would
put your ear up to the other cup and be able to hear your
friend. The Dixie cups in this example represent Sockets.
You communicate with your friend by talking into the cup
(getting an output stream from the Socket and sending
bytes) and by putting your ear up to the cup to hear your
friend talk (getting an input stream from the Socket and
reading data from it). A stream is a flowing sequence of
characters that flow into or out of a process.

1.3 Operations of Socket:
A socket performs four fundamental operations:
1. To connect to a remote machine,
2. Send data,
3. Receive data and
4. Close the connection.
A socket may not be connected to more than one host at a
time. However, a socket may both send data to and receive
data from the host to which it's connected. The
java.net.Socket class is Java's interface to a network socket
and allows you to perform all four fundamental socket
operations.

1.4 Port:
In computer networking, a port is an application-specific or
process-specific software construct serving as a
communications endpoint in a computer's host operating
system. A port is associated with an IP address of the host,
as well as the type of protocol used for communication.
The purpose of ports is to uniquely identify different
applications or processes running on a single computer.
The protocols that primarily use ports are the Transport
Layer protocols, such as the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP) of the
Internet software stack, often called TCP/IP (Transport
Control Protocol/Internet Protocol)stack, as shown in figure
:1.4. They use ports to map incoming data to a particular
process running on a computer. So a port will identify a
socket on a host.

 Again, an IP Address is not enough to identify a unique
server, because many server programs may exist on one
machine. So we need a unique identification for each
server. This unique identification is referred to as port.

When we are setting up client or a server we must choose a
port to where both client and server agree to meet. This port
is not a physical port, but a logical port specified by a 16-
bit integer number. Some port nos. from 0 to 1024 has been
reserved to support common/well known services and the
developer must be careful not to use one of the well-known
port numbers defined in the RFCs while developing a
proprietary client-server application.

 ftp 21/tcp
 telnet 23/tcp
 smtp 25/tcp
 login 513/tcp
 http 80/tcp,udp
 https 443/tcp,udp

User-level process/services generally use port number
value >= 1024

2. NETWORK PROGRAMMING WITH SOCKETS:
The Internet has been very popular in the past few years.
With its popularity still growing, increased demand for
Internet network software has grown as well. One of the
greatest advantages to developing Internet software with
Java is in its robust networking support built into the core
language. The java.net package provides us with classes
representing URLs, URL connections and sockets.
Combined with the java.io package, we can quite easily
write sophisticated platform-independent networking
(Internet) applications. Network programming makes use
of socket for Interprocess Communication. Due to which
Network programming is also termed as socket
programming. In Socket programming using Java, BSD
style Socket to Interface with TCP/IP services is used. BSD
Socket Interface provides facilities for Interprocess
Communication. BSD Socket Interface supports different
domain, the UNIX Domain, the Internet Domain and the
NS Domain. Java Basically supports the Internet Domain to
maintain cross platform. In Internet Domain, the BSD
Socket Interface is built on the top of either TCP/IP or
UDP/IP or the raw Socket. Socket Programming is
important to understand how internet based interprocess
communication work but not at the level program
developed but at a higher level that is compiled to set of
Socket Programs. Here sockets can also be termed as
network socket or Internet socket since communication
between computers is based on Internet protocol.
2.1 Socket Programming With TCP:
TCP provides a connection oriented service, since it is
based on connections between clients and servers.
Connection-oriented means that a connection is established
before processes can exchange data. The Transmission
Control Protocol is also reliable because when a TCP client
sends data to the server, it requires an acknowledgement in
return. If an acknowledgement is not received, TCP
automatically retransmit the data and waits for a longer
period of time.
The processes running on different machines communicate
with each other by sending messages into sockets. Each
process is analogous to a house and the process's socket is
analogous to a door. As shown in Figure 2.1, the socket is

Application (http, ftp, telnet etc.)

Transport(TCP,UDP)

Network (IP,..)

Link(device driver)

Figure: 1.4 TCP/IP software stack

Limi Kalita / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4802-4807

www.ijcsit.com 4804

Figure 2.2: Client socket, welcoming socket, and connection socket

the door between the application process and TCP. The
application developer has control of everything on the
application-layer side of the socket; however, it has little
control of the transport-layer side. (At the very most, the
application developer has the ability to fix a few TCP
parameters, such as maximum buffer size and maximum
segment sizes.)
From the application's perspective, the TCP connection is a
direct virtual pipe between the client's socket and the
server's connection socket. The client process can send
arbitrary bytes into its socket; TCP guarantees that the
server process will receive (through the connection socket)
each byte in the order sent. Furthermore, just as people can
go in and out the same door, the client process can also
receive bytes from its socket and the server process can

also send bytes into its connection socket. This is illustrated
in Figure 2.2.
Because sockets play a central role in client/server
applications, client/server application development is also
referred to as socket programming. Before providing our
example client/server application, it is useful to discuss the
notion of a stream. A stream is a sequence of characters
that flow into or out of a process. Each stream is either an
input stream for the process or an output stream for the
process. If the stream is an input stream, then it is attached
to some input source for the process, such as standard input
(the keyboard) or a socket into which data flow from the
Internet. If the stream is an output stream, then it is
attached to some output source for the process, such as
standard output (the monitor) or a socket out of which data
flow into the Internet.

PROCESS PROCESS

SOCKET
SOCKET

Application Layer

TCP of Transport Layer

Application Layer

TCP of Transport layer

Controlled
by
Application
developer

Controlled
by
Application
developer

Controlled
by Operating
system

Controlled
by Operating
system

Figure: 2.1 Process communicating through TCP sockets

 PROCESS
 PROCESS

Client socket

Welcoming socket

Connection socket

Client Process Server Process

Three way handshake

Bytes

Bytes

Time

Limi Kalita / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4802-4807

www.ijcsit.com 4805

Figure: 2.3 TCP client – server

2.2 Socket programming over TCP in Java:
Java has provided the facility to create sockets for
interprocess communication (IPC). So while programming
for sockets in java, one has to make sure to import the
java.net package. The java.net package in the Java platform
provides a class, Socket that implements the client side
connection. And a class ServerSocket that implements the
server side connection. The Server Socket on the server
performs the methods ‘bind’ which is to fix to a certain port
no. and IP address, ‘listen’ to wait for incoming requests on
the port and ‘accept’ for acceptance of connection from the
client respectively. Upon acceptance, the server gets a new
socket bound to the same local port and also has its remote
endpoint (i.e. socket) set to the name of the machine and
port of the client. So the client initiates a three way
handshake with the server and creates a TCP connection
with the server. The client and server can now
communicate by writing to or reading from their sockets.
And when communication is done between the client and
the server, the close method is called from both client and
the server for closing the connection as shown in figure: 2.3
below:
The list is a summary of functions or methods provided by
the Berkeley sockets API library:

 socket() creates a new socket of a certain socket
type, identified by an integer number, and
allocates system resources to it.

 bind() is typically used on the server side, and
associates a socket with a socket address structure,
i.e. a specified local port number and IP address.

 listen() is used on the server side, and causes a
bound TCP socket to enter listening state.

 connect() is used on the client side, and assigns a
free local port number to a socket. In case of a
TCP socket, it causes an attempt to establish a new
TCP connection.

 accept() is used on the server side. It accepts a
received incoming attempt to create a new TCP
connection from the remote client, and creates a
new socket associated with the socket address pair
of this connection.

 send() and recv(), or write() and read(), or sendto()
and recvfrom(), are used for sending and receiving
data to/from a remote socket.

 close() causes the system to release resources
allocated to a socket. In case of TCP, the
connection is terminated.

2.3 Socket programming over UDP:
UDP is a connection-less, datagram protocol. The client
does not establish a connection with the server like in case
of TCP. Instead, the client just sends a datagram to the
server using the sendto function which requires the address
of the destination as a parameter. Similarly, the server does
not accept a connection from a client. Instead, the server

Limi Kalita / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4802-4807

www.ijcsit.com 4806

Figure: 2.4 UDP client - server

just calls the recvfrom function, which waits until data
arrives from some client. recvfrom returns the IP address of
the client, along with the datagram, so the server can send a
response to the client as shown in figure:2.4. There isn’t
any initial handshaking phase. It lacks reliability because
when you send a data or message, you don't know if it'll get
there, it could get lost on the way. There may be corruption
while transferring a message.
This list is a summary of functions or methods provided by
the UDP Socket given below:
 socket():Both the client and the server creates the

socket() function.
 bind():It is typically used on the server side, and bounds

a socket with a socket address structure, i.e. a specified
local port # and IP address

 listen():It is typically used on the server side passively
waiting for incoming connections from the client.

 sendto():It is on both client side and server side .It is
used to send a datagram to another UDP socket

 recvfrom(): It is on both client side and server side . It is
used to receive a datagram from another UDP socket.

 close():close a socket(tear down the connection).

3. CONCLUSION:
This paper describes the details about sockets, ports, socket
programming over TCP and a little bit of UDP. Network
programming makes use of socket for interprocess
communication between hosts where sockets act as the
endpoint of the interprocess communication. Here sockets
can also be termed as network socket or Internet socket
since communication between computers is based on
Internet protocol. So Network programming is also Socket
Programming. The paper also describes about socket
programming in java over TCP. Because java has been
preferred more than any other language for establishing
connections between clients and servers using sockets.
Socket programming in java is easy.

REFERENCES:
1. http://en.wikipedia.org/wiki/Berkeley_sockets.
2. James F. Kurose, Keith W. Ross, “Computer Networking: A Top-

Down Approach featuring the Internet”.
3. Joseph M. Dibella , “Socket Programming with Java”
4. http://www.tutorialspoint.com/java/java_networking.htm
5. The Java Tutorials, “Lesson: All about Sockets”.
6. Rajkumar Buyya, “Socket Programming”.

Limi Kalita / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4802-4807

www.ijcsit.com 4807

